Physics Motivation

Compare physics model to experimental data and extract crucial parameters that quantify the properties of the quark-gluon plasma created in relativistic heavy-ion collisions.

Example: JET Collaboration work [PRC 90 (2014) 014909]

Physics Motivation

Constraint \hat{q} from the JET Collaboration

 \hat{q} : transverse momentum broadening of jet per unit time inside a medium due to elastic scattering with the medium

- Single parameter is used \hat{q} or $\alpha_{\rm s}$ for each model
- Each model is compared to only one set of experimental data from RHIC and one from LHC separately
- A jump of \hat{q} as function of temperature (T)
- Smooth function w.r.t. *T* needs multi-dimensional parameter space and simultaneous comparison to multiple data sets *computational expensive*

Physics Model: Linear Boltzmann Transport

Monte-Carlo based transport model for medium-modified jet evolution in heavy-ion collisions (developed by the LBL-CCNU group) [PRL 111 (2013) 062301, PRC 94 (2016) 014909, arXiv:1704.03648]

Simultaneous description of single hadron R_{AA} from RHIC to LHC 2-dimensinal parameter space (α_s^{med} and Λ^{jet}):

- (1) fixed strong coupling $lpha_s^{
 m med}$ for thermal medium (low energy scale)
- (2) Running coupling constant for jet-medium interaction

$$\alpha_s^{\rm jet} = \frac{4\pi}{9} \left[\ln \left(\frac{ET}{\Lambda_{\rm jet}^2} \right) \right]^{-1} \quad \text{including energy and} \quad \text{temperature dependence}$$

In this work

Extract $\alpha_s^{\rm med}$ and $\Lambda^{\rm jet}$ by calibrating LBT model calculation to experimental data of light flavor charged hadron $R_{\rm AA}$ at AuAu@200GeV, PbPb@2760GeV and PbPb@5020GeV simultaneously (two centrality bins for each collision system, 6 data sets in total)

Heavy flavor hadron is not included – more complicated in physics and may involve more model parameters (future effort)

Bayesian analysis instead of eyeball fit to the lower 6 sets of experimental data

Extracted \hat{q} from LBT + Bayesian analysis

Not inconsistent with previous JET collaboration work.

Hint of smaller band for \hat{q}

- Full Monte-Carlo implementation vs. semi-analytical calculation
- Inclusion of elastic scattering in LBT
- Need more sophisticated parametrization of the temperature dependence of $\alpha_{\rm s}$